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FORMULAS FOR THE ELASTIC CONSTANTS OF PLATES WITH INTEGRAL

WAFFLE-LIKE STIFFENING ‘

By NORRIS F. Dow, &AELBS LIBOV’B, and RALPH E. HUBKA

SUMMARY

~O?WW?.@?are dk+)djOr ti$fteen eik3tic e0n8taTu%fl.!380Cia&?d
with bndi~, stretching, twi$ti~, d 8hi%ti?L9Of phz.t-eswith
closely spaced intqra.1 ribbing in a variety of c0@@rati0n8
and proportimw. @ h deriuaiion the pliu!es are cork%ered,
conceptdy,e w more uniform orthotropic pkl.% somewhut on
& order of plywood. The cwwJih, which include the eJec-
twenem of the ribs for r&ing deforma$iww other than berui%q
and stretching in their lmvj.tudimd dweeihbw, are dejined in
i2rm9 of four coejibiemk a, 19,a’, and ~’, and i%mrd.eal and
experimental nuthooh for the evaluation of tie coej%i9nt4 are
di.swsed. Four of the more important ela$ti.e cmwhz% are
predicted by these formu.k and are compared with tat red%.
Good comeluiion ix obtaimd.

INTRODUCI’ION

Growing interest in integrally stif?ened construction,
evidenced by such papers as references 1 and 2 and by the
large forging press program (ref. 3) and the ohemical milling
process (ref. 4) which will provide facilities for production,
emphasizes the need for information on the structural char-
acteristics of integrally stiilened plates.

A prima~ requisite for the prediction of structural charac-
teristic of plates is a knowledge of their elastic constants.
In the present report, therefore, formulas are derived for
the fifteen elastic constants associated with the bending,
stretching, twisting, and shearing of plates with closely
spaced integral ribs running in one or more directiom. The
ribbing patterns covered by the formulas are illustrated in
figure 1 and include those considered in reference 5. The
rib cross section is arbitrary, although special auxiliary
formulas are given for the rectangular-section rib with
circular fillets at its baae.

The elastic-constant formulas derived involve four co-
efficients a, B, a’, B’ for each rib which deiine the effectiveness
of the rib in resisting deformations other than simple bending
or stretching in its longitudinal direction. For most purposes
a reasonably acourate evaluation of them coefficients is
required. Experimental and theoretical methods of evaluat-
ing them are discussed.

As a check on the erectness of the elastio-constant
formulas, the predictions of the formulas for fonr of the
more important elastic constants are compared with experi-
mental data.

(a) (b)

(c) (d)

(a) Longitudinalor transveme. (b) Longitudinaland transverm.
(o) Skewed. (d) Skewdd&wl:m&udinal

FIGUREI.—Ribbing configurationsconsidered.

SYMBOLS

Plane I is defined as the plane in which N. acts and in
which % is measured. Plane 11 is defied as the plane in
whioh N. acts and in which c, is measured. Plime Ill is
deiined as the plane in which N= acts and in which YZBis
measured.
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These three planes are illustrated in figure 2.

GENERALSYMBOLS

coupling elastic constants assooiatad with
bending and stretching and deiined by the,
force-distortion equations (l), (2), (4), and
(5), lb-’

coupling elastic constanta associated with
bending aid stretching and defined by the
force-distortion equations (7), (8), (10),
and (11), in.

coupling elastic comtant associated with
twist and shear and defined by the force-
distortion equations (9) and (12), in.

bending stiflnw in z- and y-directions,
respectively, in-lb

twisting @Wnesses relative to z- and y-
directions, in-lb

Young’s modulus of material, psi
extensional stiffnwes in z- and y-directions,

respectively, lb/in. ●

shear modulus of material, psi
shear stiffness of plate in ~-plane, lb~m
resultant bending-moment intensity in z- and.-

@i.rections, respectively, lb
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remhmt twisting-moment intansity with re-
gmd to x- and y-directions, lb

intensity of resultant normal force acting in
z-direction in plane I, lb~m.

intmsity of resdtant normal force acting in
y-direction in plane II, lb/in.

intensity of resultant shear force acting in z-
and y-directions in plane Ill, lb~m.

coordinate, measured parallel to skewed rib,
in.

coordinate, measured perpendicular to skewed
. .rib, in.

coupling elastic constant associated with
twist and shear and defied by the force-
distortion equations (3) and (6), lb-’

displa&ment in z-direction, in.
strain energy, in-lb
coordinate, measured in longitudinal direc-

tion, in.
coordinate, measured in transveme direction,

in.
coordinate, measured perpendicular h faces

of skin, in.
shear strain, with respect to z- and y-direc-

tions, of plane III
slrain of plane I in direction and of plane II

in y-direction, respectively
Po&on’s ratio for material
Poisson’s ratios associated with bending in z-

and y-directions, respectively, and defined
by the form-distortion equations (l), (2),
(7), and (8)

[

Poisson’s ratios associakd with extension in z-
and y-directions, respectively, and defined
by the force-distortion equations (4), (5),
(10), and (11)

SYMBOLSBEPRESENTXNGDIMENSIONS

swise and y-wise length, respectively, of
smallest repeating unit of plate, in.

spacing of skew ribs, equal to bJsin 0 or
b,/cos 0, in.

rib spacing (measured between center lines of
pdd ribs), in.

rib depth, E—b, in.
diameter of largeat circle that can be inscribed

in cross section at inter-section of rib and
skin, in.

distanca from plan& of zero strain to rib
centroids, in.

overall height of rib plus skin, in.
radius of fillet, in.’
corner radius, in.
thicknes$ in.
average or equivalent thickness, in.
angle of skewed ribbing, measured from the

longitudinal direction, deg

SYMBOLSUSEDIN EQUATIONSFOR ZLASTICCONSTANTS

f, g, h

k~, kn, km

gu, CYw, am
a=, avj a,

a

a’%, a’v, a’.
●

CY’

h Armk
l%,l%,/%

B

B’%,B’tJ)b’a

L

s
T
w
8,z, y

LL
UL

constant used in equations for calcu-
lating a’m

crow-sectional area (including fillets)
of x-wise, y-wise, and skewed ribs

, (Am, includes area of two ribs),
Sq in.

general symbol for AW=,Alr , or Aw,
fconstants used in equations or calcu-

lating am and &L
cross-sectional moment of inertia of

I

I

z-wise, y-wise, or skewed ribs
about their centroids (IW, is twice
the moment of inertia of a single
skew rib), in.’

dimensionless distance from middle
surface of shed to planes 1, II,
and JJI, respectively, *xTressod as
fractions -of the overall height H

dimensionless distance from middle
surface of sheet to centroid of z-
wise, y-wise, or skewed rib, ex-
pressed as a fraction of the overnll
height H

constants used to locate the effective
centroid of a rib for resisting bend-
ing in it9 transverse direction

general symbol representing a., a~,
or a,

constants used to locate the effective
centroid of a rib for resisting
twisting

general symbol representing a’,, a’v,
or at%

constants used to define effectiveness
of a rib in resisting stretching in
its transverse direction

general symbol representing l?,, &,
or ps

constants used to deiine effectiveness
_ofa rib in resisting shearing

general symbol representing B’,, 19’B,
or pfs

SUBSCRIPTS

longitudinal
sheet or skin
transverse
rib (web)
indicata application to skewed, x-

wise, or y-wise ribs or directions
lower limit
upper limit
experimental
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DEFINITION OF ELASTIC CONSTANTS

If the rib spacings of integrally stiffened plates such aa
those shown in figure 1 are small in comparison with the
plate width and length, it is plausible, for purposes of study-
ing overall or average behavior, to assume that the actual
plate may be replaced by an equivalent uniform orthotropic
plate. Figure 2 shows an infinitesimal element of the
equivalent plate subjected to bending moments of intensity
M= and M,, twisting moments of intensity Mm, stretching
forces of intensity N= and NV acting in planes I and IIj
respectively, and shearing forces of intensity N= in plane
III. The locations of planes I, H, and Dl are arbitrary.

The behavior of the element can be described by a set of
force-distortion relationships in which elastic constants
appear. Such relationships for special rectangular ortho-
tropic plates having their axes of principal stifhwss parallel
and perpendicular to their edges, as considered herein, are
obtainable from reference 6. If deflections due to depth-
wise shear are assumed to be negligible as is customq in
ordina~ plate theory, the following equations (eqs. (l’)
to (6’) of ref. 6) are obtained:

(1)

(2)

(3)

(6)

e=and eVare the extensional strains in planes I and II, re-
spectively, and T’mis the shear strain in plane EL

According to these equations, fifteen constants are needed
to establish the force-distortion relationship~namely, two
bending stiifncmes D. and D*, a twisting stiflness D-, two
stretching moduli E. and Ev, a shearing modulus (2=, two
Poisson’s ratios ~ and p. associated with bending, two
Poisson’s ratios p’= and ~’v associated with stretching, four
coupling terms C=, C-, CW,and CWassociated with bending
and stretching, and one coupling term T associated with
twisting and shear. Not all these constants are independent,
however; for e..ample, as a consequence of the reciprocity
theorem for elastic structures, ~= Dvk/D. and .u’v=EvP’=/E=.

The form in which the force-distortion relationships have
just been given is not the most convenient form for some
applications, particularly for buckling calculations. For
such purposes a more suitable form is obtained when the
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—-—Plone I1
.

—---—Plane m

Fmmm 2.—Forces and moments actiig on element.
.

first three equations are solved simultaneously for M=, M,,
and M.. and these expressions are then used to eliminate
.ilL, MY, and &fn in the last three equations. The six new
force-distortion equations thus obtained are

M.=–DI
( $+P. ~)+ CIIN.+GWv 0)

(8)

(9)

(lo)

(11)

(12)

Of the titeen elastic comtanta appearing in equations (7)
to (12), two, k and ~, were also in the original set of force-
distortion equations. The remaining constants (Dl, D9, D~,
E, E, dkj A, M, G, G, f%, f%, ~d @ are ‘(new.” The

algebraic relationships between the new and the original
elastic constants are given in appendii A.

METHOD OF ANALYSIS

The analysis is made for a plate w+% the general pattern of
ribbing shown in i@re 3 (a), which includes, as special cases,
the patt8rns of @re 1. A typical repeating element of the
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plate is indicated by the
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figure
3 (rL)and is shown three-dimensionally in iigure 3 (b).

The analysis is based on the assumption that each of the
four rib segments shown in figure 3 (b) may be replaoed by
three orthotropic sheets of material parallel to the skin, eaoh
one covering the entire area Z@r and each fastened to the
skin by means of many hypothetical, perfectly rigid, infinite+
imally small bars imbedded perpendicularly through the skin
and sheets (see fig. 4). The substitute sheets are assumed to
offer no interference to one anotlmr. (The rib is understood
to include any fillet material but no part of the ah.) The
properties of the three substitute sheets are so chosen that

l\ ●

(d l+,+’
.

(a):Mosb general pattern of ribbing considered. (Shorklashed Iinei
enclose typical element.)

(b) Three-dimensionalview of typical element.
Fmmm 3.—Repeating element of plate with integral, waflle-like

stiffening.

one sheet (labeled @ in fig. 4) represents only the effective-
ness of the rib in resisting stmetohingand bending in its
longitudinal direction, another (labeled @) represents only
the effectiveness of the rib in resisting stretching and bending
in its transverse direotion, and the third (labeled @)) repre-
sents only the effectiveness of the rib in resisting shearing and
twisting relative to its longitudinal and transverse directions.
(The transverse direction, as used herein, is the direction in
which tw is measured, see fig. 3.) In order for the three
substitute sheets to accomplish their purpose, they are
-assigned the following propertie9:

(a) Sheet @has a volume equal to that of tbe rib segment
it replaces, -with its center of gravity at the same level as
that of the rib. Its stretching or compressing modulus of
elasticity in the direction of the rib is E and ita modulus
transverse to the rib is zero. Its stiflneasper unit width for
bending in the direction of the rib is equal to the bending
stiffness of the rib about its centrcid divided by the rib
spacing (i.e., b. for a y-wise rib, 6Vfor an z-wise rib, ond b,
for a skew rib, fig. 3(a)), whereas its bending stitl+neasin the
direction transverse to the rib is zero. The shearing and
twisting stifhmwa and Poisson’s ratios of the sheet ore
assumed to be zero.

(b) Sheet @ has a volume equal to some fraction B of
the volume of the rib segment, with its center of gravity at
some distance aH above the middle surface of the skin.
The modulus of elasticity for stretching or compressing in
the direction transverse to the rib is l?, whereas thot in the
longitudinal direction of the rib is zero. The bending, shem-
ing, and twisting stijlnessw, and Potion’s ratios for sheet@
are all assumed to be zero.

(c) Sheet @ has a volume equal to some fraction B’ of
the volume of the rib segment, with its center of gravity at
some distance a’H above the middle surface of the skin.
Its modulus of elasticity for shearing relative to the longi-
tudinal and transveme directions of the rib is U, wherena its
twisting stiilness relative to these two directions is zero,
as are the stretching and bending stiffness and Poisson’s
ratios.

On the basis of the foregoing assumptions, the integrally
stiilened plate has been converted to a more homogeneous
plate somewhat on the order of plywood. The assumption
of rigid bars connecting the substitute sheets and the skin

-p+

I I

r%-
Ickorld . Actwd

l?mwm 4.-Comparison of idealized and actual rib-skin uombinationa.
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is cquivalent to the assumption that material lima normal
to the surface of the plate before deformation remain straight
during deformation. If it is further assumed that these lines
remain perpendicular to the surface of the plate and that the
stressesare in the elastic range, any of the methods used for
ordinary isotropic pinte analysis may be readily extended to
the present idenlized structure.

. I?or the present purpose an energy method is adopted to
ddxmnine the six forces and moments necessary to maintain

and V.r. The equations obtained for these forces and mo-
ments in terms of the distortions are put in the form of equa-
tions (1) to (6) to yield formulas for the original elastic
constants or in the form of equations (7) to (12) to yield
formulas for the new elastic constants.

The details of the analysis and the derivation of the elastic
constants me presented in appendix B. The formulas
obtained for these constants me presented in the following
section and the evaluation of a, & a’, and & is discussed in
two succeeding sections.

FORMULAS FOR ELASTIC CONSTANTS

In this section the formulas are presented for the calcu-
lation of the-fifteen ektic constants appearing in equations
(1) to (6) and the thirteen new constants appearing in equa-
tions (7) to (12). The formulas are presented for the most
general type of plate considered, which is i.llustra~edin
iigure 3. For plates with one or more sets of ribs omitted,
the formulas also apply when the terms representing the
arew and moments of inertia of the omitted ribs me set
equal to zero.

The formulas for the constants in the original force-
distortion equations (1) to (6) are as follows:

(15)

(18)

(19)

p-j)

{

A,UJ,-I,~+AdJ.&-k,) &ii) +A,AJJ%hI) @r&) +A41X&-k~ &kn)–

A,’I,(&–k~ &k.)+i4,AzA.&k,) &kn) &–F,) @–z.) }
(21)

“z=A,(I.Ip-I,~+ A.AYI,@-k~’-A,@ .-k~ [A,I,(Z,–k~–2A.~, ~–~,)+AsA.@s–kl) (%-~.)’l

~A,21,@,-k,)@,-k.)+A,AA,@-k~&-hr)@z-~,)&k) J (22)

“u=A.(IJ,-I,~+A.A,I.&ku)g-A,@.-kn) [A,I.&km)-2AJ,@ r–&,)+A.A.&krr) @–k,)q

1
‘“’m (23)
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‘=-drr~ikm)l(27)

The formulss for the constants in the new equations (eqs.
(’7) to (12)) areas follows:

[
D1=EIP I.–~ A: (&q (28)

()E,=EH $
u

(29)

(30)

(31)

()~=E= AZ
A,

‘(32)

(3..=EH&) (33)

A,#1=—
A.

(34)

A,p2=—
A.

(35)

( )
A&&–At~.

C,,=H k,– ~ , (36]
*

Cn=H
[ 1

A,A.&k,) -

z,~
(37)

Ca,=H
[

A,Av&~,)

2,2 1 (38)

(39)

CFH&-km) (40)

where
E Young’s modulus of material, psi
H overall height of skin plus ribs, in.

The quantities ~,, ~,, A., A., A,, and A-, ~., ~ti,~,, and
Z=, I., IV, I,, and I& appearing in equations (13) to (40) are
defined by the following equations:

A,S=AJV—A: (41)

l:= Lii?+AsAzAJ&k) (~.–i,) (42)

I t~ Av-Jh AwJb. Aw,/b,

(
A.=- ~+~+flv ~+~ COS4O+(i13h48+

P’* ~:p
“)

—Sirrecof?o (43)

AF
Av$b, Awj6, AwJb.

(
&, ~+flz~+~+~ side+p,COS40+

B& l+JI )
sir? 0 cost o (44)

AwJb,
A,.~ “+7l—p’ E (

side Cos*e+p, Sidtl cotie—

fir, ~:p
)

—S SM 9 COi’e (46)

Aw$b, AwJb.
-J-- %’. & ~+19’. & ~+‘-=2(1+P) H

AwJb,

H [ 1‘h’oCos’o+p’‘h’oCos’o+b”& ‘os’
1Aw..Jbti - ‘~Jb~ &, ~os4e+‘+ (ay)+T

‘=~= [~ (kw.)+~ H (

13.a,Si1140+~’,a’, -2-l+JL )1
side COE?13 (47)

* AwJbti

[

AwJb. - AwJb, -
-7ii=~ B. ~ (%)+ (kw,)+~ (’w, ~’o+

l%ffsCoa’e+p’d, ~ ‘
l+p )1

sido c0s2e (48)

[(

1 AwJb. - “
-Z,=x ~ k~, SinzOcosze+p,a, sin20 COSlO–

s

2
“’a’” l+JL )1

— 8h2e c082e (49)

{
1 *db’ (a,;)+~A* (a’J+/3’Y ~ ~~=A~ “z 2(1+J H

AwJb, -

[
— k~, sin% cos20+&a, singOccwztl+

H
1

“’a” 2(1+/L) 1}
C41S%9 (50)



(61)

‘#[(~w8-~.)2s~’e+BJ(.J-L)2c.s’e+

(/y,(a~,_~)’ -_?_
1+# )1

side cos~e

t~ 3 Iw,/b,

() —Sin’e ~s’e+fi~ 6)’+L=- g + H3

‘%[( , ‘)’~W –k, Sin’LeCOS26+f?,(a,-~,): SiJ128COS’&

(
/3’, (cY’,-Z,)’ ~

l+p )1
side cos~e .

()1=’’-6(1L) H
Iw,/b,

— ~ 3+4
,:.2 @Ja+

~ Sin=e cos=8+— —

2 AwJb,
— — (al=–~)’+~~ _ZAM= (a~,_&)’+

‘“ 1+~ H r l+A H

4A+{(~w*-L)2s~’ocos’o+

(52)

(53)

[
Bs(%-zv)’sin% cos’e+/Y,(a’*-zJ _L-

1}2(1+/J Cos’M

where
(54)

b., b,, b, the spacing of the z-wise, y-wise, and skew ribs,
respectively, in.

the angle of skew of the ribbing, deg
& the overall height of skin plus ribs, in.
h the thicknew of the skin, in.
P POiESOI1’Srati. for ma~~

Equations (43) to (s4) contain the quantities Aw=, AW~,

~d Aw,, ~w=, Zwv, ~w,, ad Iw=, Iw , ~d lW, which define
the arens, locations of centroids, ancf moments of inertia of
the ribs. For rectangular ribs with circular fillets, aa shown
in figure 4, these quantities are given by the equations

~. (57) contains a factor 2 to account for the fact that
there are two ribs in the skewed direction-one at an angle
+0 to the direction and the other at an angle –d to the
z-direction.)

(61)

(63)

The dues of kl, k=, and km depend upon the locations of
the centroids of the forces N=, N,, and N=, respectively, im-
posed upon the plate element. (Sss fig. 2.) For the impor-
tant case in which N= acts in such a plane that it produces—

Ww
— and Nr acts in such a plane that it produces‘0 Cmatwe W

no curvature ~%~ C= and Cw must equal zero (see eqs. 1 and
w

2) and, therefore,

.
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Similarly, for the case in which N= acts in such a plane &at
b%

it produces no twist —
ax*’ T ‘Ust ‘qud ‘em ‘d’ ‘here fore’

km=~= . (66}

If N. and N, do act in such planes that they produce
MD ah

c-at- m and ~’ the actual location9 of the force9

(planes I and H) must be known if constants (such as l?.,
p’=, etc.) which depend upon the locations of the applied
forces are ti be evaluated.

The average or equivalent thickncas of integrally stiflenecl
plates having rectangular ribs with circular fillets in the
various configurations considered herein may be calculated
hm the following formulas: For simple longitudinal or
transverse ribbing (fig. 1(a)),

(67)

or

For combined longitudinal and transverse ribbing (fig. 1(b)) having a corner “radius Rm>rw and with rv~ blending
smoothly with ryv at the cornem,

(69)

For the special square pattarn of longitudinal and tmnsveme ribbtig hafig t~==tw~ ~d rTF,=~w~equation (69)
reduces tm

For skewed ribbing (fig. 1(c)), again for &>rW,

For 45° skewed ribbing, equation (70) reduces to the form equivalent to (69a); thus,

For combined skewed ribbing and transverse (or longitudinal) ribbing in a pattern of triangles, again for Rw >rw,

3=’

(70R)

(71)
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For the special equilateral triangle pattern having tv,=tvg=tw and rv,=rw~=r~, as considered in reference 7, equation
(71) reduces to

g, (:-')[(2-l`%Y-```&) l-"Q'r5Y{"'[(>l`%)-ll``%-"`"`%l} ,71a1—.
Hb,’

()~~
For combined longitudinal and transverw and skewed ribbing M illustrated in figure 3(a), for Z?W>rm as before,

[( ){ [(
H 1

)(

b= tw,SW & b, tw b

@ 5 t.q t~ t~ )
—~~ce—~~to + ‘
t~ t~ t~

\1

1- J d
E b, b, (72)
———
t~ t~ t~

and, finalIy, for the special case of combined longitudinal and transveme and sk&ed ribbing illustrated in iigure 1(d)
having tw==twv=tw,,rw==rw,=rw,, and b== b,= 1.414b,,equation (72) reduces to

EVALUATION OF a AND @

EXPERIMENTALEVALUAnON

The coefficients a, ~, a’, and /?’ occurring in the equations

for the elastic constants express the effectiveness of a rib for

resisting deformations other than bending and stretching in

its longitudinal direction. For the evaluation of a and p for

a given set of ribs (longitudinal, transverse, or skewed) prob-
ably sutlicient accuracy will be achieved from a direct experi-
mental measurement with a simple model having one set of
ribs with cross section and spacing that duplicate those of
the ribs for which the coefficients a and P are betig sought
and with a value of t3equal to that of the actual plata. -

A double specimen of the type shown on the righbhand

side of figure 6 may first be used to evaluate /3through a

tension test and, then, one-half of the specimen may be used

to evaluate a through a bending test, as illustrated on the

left-hand side of figure 6. The use of a double specimen for

the stretching test is suggested because the symmetry will

diminate localized bending of the skin between ribs and facil-

ittute the measurement of overall strain. Because of the pre-
vention of localized bending, the value of ~ should be some-
what higher than that which would be obtained by stretching
a single specimen like the one on the lef&hand side of figure 6.
However, such an overestimate of L?may be desirable if the
actual plate has ribs in more than one direction, because then
the localized curvatures associated with one set of ribs will
tend to be reduced by the presence of the other ribs.

The length-width ratio of the specimen should be great
enough so that any end grips or heavy end sections will offer
negligible resistance to transverse contraction in the stretch-
ing test and to the development of transverse curvature in
the bending test. Furthermore, the width of the specimen
should be suiiiciently large compared with the rib spacing so
that the percentage of the specimen subject to shear-lag
effects arising at the rib ends is small.

The use of these tests for the evaluation of a and P are now
described in detail. l?or ease in discussion, the ribs for which
a and /3are being sought are assumed to be oriented in the
y-direction as shown in figure 5. After the values of av and
& have been determined, however, the subscript y should
be changed to z or ~ if, in the actual plate, the ribs under
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consideration are oriem%d in the longitudinal or skew
direotion of the plate.

The conditions of the sticetohiug test illustrated in the
.

Y“

/
q W.—----f’

—

FIQu_m5.-SpeoimenE for evaluation of. and p.

Ml) b%
righkhand side of figure 5 are —=- —NV=O. Substi-ati ~
tuting these conditions in equation (10) and making use of
equations (31), (41), (43), (44), and (45) gives

=E= AsA,-A,=
* Av

Solving for &. gives

1E{N= t.
&=A> EHG H—— . [2iiz2}(74)

Aw,/b, .
ivhere, for rectangular ribs with circular Mete, ~ M w

g@en by equation (56). If the value obtained in the .stretoh-
ing testis used for N./EHG in the righ&hand side of equation
(74), an experimental value of By, or L&,, is obtiined (%
is the z-wise strain averaged over at least one multiple of b,).

The conditions of the bending test illustrated in the lefh
hand side of figure 5 areN.=NV=MV=O. Substituting these
conditions in equation (1) and making use of equations (13),
(19), (42), (47), (49), (51), ~d (53) @W

where

z,=o
73

(76)
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%= #&4#=)] - ( %#.) -:(I@-A,2A~:)’-A,A:Tc; /3,

where, as before, for rectangukw ribs with circular fillets,
Aw /bz
~ is as given by equation (56).

Substituting for M~EIT~ the value obtiinedin the bend-

ing test, and for P, the value obtained from equation (74)
permits equation (77) to yield an experimental value of

(?PW.
ati ~ IS the x-wise curvature avemged over at leaat one

multiple of bz~. The quantities ~s’, A, Av~ A#~ ~, Iv, I.

me obtained fhm equations (41), (43), (44), (45), (48), (62),
and (63), respectively, with Aw==Aw,=Im= = Iw,= O; thus,

where ~w, is m given by equation (69).

THEORETICALEVALUATION

AccurrLtetheoretical analysis of the situations depicted in
figure 5 is diilicult. However, it is possible to obtain values
of a and p that undercstinmte or overestimate the stiffness
of the specimens. An underestimate is obviously obtained
by assuming no part of the rib to be eflkctive in resisting
tmnsverae stretching or bending h a direction transverse to
itsdf. A lower limit-value of Bis, therefore,

p=/gu=f) (79)

When /3is taken as zero, the value of a is immaterial.
An over&mate is obtained by analyzing the two speci-

(77)

mem shown in iigure 5 for their small deformations under the

assumption that plane sections perpendicular to the skin and

perpendicular or parallel to the direction of ribbing remain

plane. The resuk of such an analysis of the two situations
illustrated in figure 5 are as follows:

For the double specimen on the right-hand side of figure 5,

For the single specimen on the M%and side of figure 5,

where I, g, and j are geometric properties of segments of
length b= of the cross sections shown. The symbol 1 rep-
resents the moment of inertia of such a segment about its
centroid, g is the integral, taken in the z-direction, of the
recipnmal of the 100althiclmew measured in the z-direction,
andf is i!s2times a similarintegral of the cube of the reciprocal
of the local thickness. When the ribs are rectangular with
circular iillets, these quantities are given by the following
form&s:

(82)
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(83)

f=:+ ~ ~ (y+fl-2 + (84)

where g’ and f’ We functions of the ratio of fillet radius to
skin thickness given by the equations

‘=’{m&} -

{.n-,Jq}-. (85)

~d Iw’y.
~ is as given by equation (62).

The values of N’EHG and M.JEZ3 ~ obtained from

equations (80) and (81) may be thought of as experimmtal
results and they may therefore be substituted in equations
(74) and (77) to obtain values of ~~ and am corresponding to
an overestimate of the stiffness of the specimen.

A lower overdmate of stiffness w be obtained by analyz-
ing, on the basis that plane sections remain plane, the single
specimen on the lef&hand side of figure 5 for both iV./EH%

a%and MJIZIY ~ and thus including the localized bending

that occum during stretchng. Besides being more conserva-
tive, the resulting valuea of am and pm would also be more
appropriate if, in the actual plate under considemtion, there
were really only one set of ribs. A+ upper-limit anal@
conducted entirely on the specimen on the left-hand side of
figure 5 would yield the following expression to be used in—
prace of equation (80):

(87)

where h is & times the intexral, taken over a length b. in the
x-direction, -of the square o~ th~ reciprocal of th~locd thick-
nesg. For circular-filleted rectangular-section ribbing, .

(88)

where h’ is given by the equation:

“=${’+2[a=+8’
Equation (81) would still be used for M./El3 ~“

Evaluation OF d AND ~’t

The coefficients a’ imd p’, which define the effectiveness of
a rib in resisting twisting and shearing relative to its longi-
tudinal and transverse directions, are not as readily measured
experimentally nor as readily bounded by an upper limit aa
a and P, although, of course, a lower-limit stiffmxs is ob-
tained by equating /3’ to zero.

An approximate ev&ation of a’ and p’ may be made by
assumhg that the same volume of rib material resists shear
as rwisti transvmw stretching, that is,

P’,=B” (90)

and then by determiningg from computations where this
material must be placed (as meaaured by a’) in order to give
the proper torsional stMnw as determined with the aid of
reference 9. The computation of a’ is now described in
detail.

Ckmsideran element, like the one on the lefbhand side of
figure 5, having only y-wise ribbing and subjected to a pure
M- loading. From equations (3), (15), and (54) the vaIue of
afy can be obtained in terms of the measured or computed

I

a%
ratio M% —ax* as follows:

where

(92)

Solving for a’, gives

“y=Jt4i@)[%“3
tA mnwrehen.dveevaluationofQ’md 6’b nowwdlnble inrefmnco8.
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/
The value of the ratio Ma & &to be inserted in

equation (93) can, in the ab;en& “of-testd“ata,be derived by
an ndoptation of the method used in reference 9 for com-
puting the torsional .MTness of I-beams and H-be-, which
give5

(04)

where d is the diameter of the largest circle which can be
inscribed in the cross section at the junction of the rib and
skin and can be computed from the formula

f_(’+??Y+%(%+H9(,,,—

2
()

~ +1

The constant a in the last term of equation (94) depends on
tWJtsand rwJts. The value of a is obtainable from figure 7

of reference 9 or, when ‘~> 0.61—0.23
()

%
—9 ~ from the
tfJ

following formula:

,
a=0.094+0.070 ~ “ (96)

The meanings of the various terms within the parentheses

()

lt.gs
of equation (94) are apparent: ~ ~ reprwem% the con-

tribution of the skin, considered aa an infinite plate, to the

(-“)(%IWWtwisting stiffness of the waffle; ~ 1 ~

is similarly representative of the twisting stitlness of the rib;

()tm 4
the term with –0.105 ~ corrects for the fact that the rib

(’9
4

is actually not infinitely deep; and-the term with a ~

represents tb~ additional stiffness due to the fdlets. The
2bnr

value 0.105 is based on the assumption that J>2.3; for
tw~

values of 2bffp/twFless than 2.3, the number O.10~should be
replaced by the number obtainable in figure 3 of reference 9
with the abscissa label b/nreplaced by the label 2bwy/twy.

COMPARISON OF CALCULATED AND EXPERIMENTALLY
MEASURED VALUES OF ELASTIC CONSTANTS

As a partial check on the theory, experimental measurements
were made of the stretching stiffness ZZ, bending sti.flmss
Zl=, shearing stitlrwss Q*, and twisting stiflhess llz, of plates
with integral ribs running either Ionggtudinally or trans-

su81sJJG-6~9

veraely (fig. 1(a)) or skewed (fig. 1 (c)). The procedures
used for the measurement of D= and D- were essentially the
same as those described in reference 6 for sandwich plates.
The measurement of l?, and Q~were made with long-gage-
length resistance-type wire strain gages mounted in the four
cornem (or diagonally on the four sides) of square-tube com-
pression or torsion specimens similar to the square tubes of
reference 5. The compression specimans were tested in the
1,200,000-pound-capacity testing machine and the torsion
specimens in the combined load testing machine of the
Langley structures research laboratory.

The experimental values obtained for the stiffnesses are
indicated by the circles in figures 6 and 7. In figure 6 the
stiffnessesare plotted against the angle of skew of the ribbing
(with 13=0° and 0=90° corresponding to purely longitudinal
and purely transverseribbing, respectively) for plates having
nominally the same weight. In figure 7, for a given angle of
skew (0=450), the variation of @e elastic constants with
SkiIlthiCb3SSis plotted. The relatively large scatter in the
test data is due to the fact that the plates used were sand
castings and, hence, had appreciable variations in thicknesses
from one specimen to ahother and also within each specimen.

For comparison, theoretical values of the four elastic
constants were computed from equations (31), (13), (33), and

1200 f- 6r

I I 1 1 I I

0
400r

2

0 45 90
.9,deg

Fmu’EE6.—Calcukked and experimen~y mowued ehdc oonstits
for plates with integral, wafflelike stiffening skewed at angles of
4z19b the longitudinaldireotion,havingtw=O.2 in., E=1O.7X I@ ksi,

bw br 2 PE=2;p= 0.32, and having the following proportions: —=4, —= ,
is tlp rr

in addition, for 8=0° or 90°, ~=0.4 and for 0“<8<90° ~=0.2.
‘ b8
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Fmmm 7.—Calculated and eq&nmntally measured oIX1O constants
for plates having integral, wrdlle-like stiffening skewed at angles of

bw z bW=2, ~=o.z,&46°tothe longitudinal direotion and havingz = , g

bw=O.2 in., E= 10.7X l@ ksi, and P= O.32.

(15) and are plotted in figures 6 and 7. The lowest curve&
each graph is obtained from the lower-limit assumption,
/3=0; the highest curve gives calculated upper-limit values
based on the use of equations (80) and (81) in calmdating
~~ and p=; the middle (dashed) curve ShOWStie r~~ts
obtainable by using for a and 6 values determined experi-
mentally on specimens like those in figure 5. & each case it
was assumed that f?’=P, and u’ was computed from equa-
tions (93) and (94). Table I summarizes the upper-limit and
experimental valu~ of a and f?used for these calculations.

In general, figures 6 and 7 indicate that the agreement
between calculation and experiment is within the experi-
mental scatter, with the calculations based on the values
*P and &P giving the best results.

CONCLUDING REMARKS

On the basis of an idealization of integraHystiffened plates
to more uniform plates resembling plywood, formulas have

TABLE I.

VALUES OF ~ a’, B, AND B’ USED IN THE CALCULATION
oF THE ELASTIC CONSTANTS FOR COMpARISON WIT13
EXPERIMENTAL MEASUREMENTS OF ~, (7~,D=, AND D=”

bw’” I a- I auL I a“’-’- I a“’-’uL I ‘- I ‘VL

bw@s=O.2
(a)

1 0.24 0.25 0:46 0.26 0.20 0.63
2 .17 .15 .33 .24 .23 .45
4 .12 . 0S5 .43 .31 14 .20
8 .004 .046 .53 .43 :12 . lSI

bw/bs=0.4
0) .

I 1 I I f I
4

I
--- 0.14 ------ I 0.44 --- 0.14

I
“ Thesa values (computed from eqs. (74), (77), (80), (81), (93), and

(94)) were used for aalouIatiug constsnti for all configurations ghwn
in figures 6 and 7 axcept those for whioh o= 0° and o= 90° (ons+vny
stiffening).

b Those values (computed from eqs. (74), (77), (81), (87), (03), and
(94)) were used for calculating constanti for configurations of figuro O
having 0=0° and 0= 90°.

beeri derived for the elastic constmts of the plates with
integral ribbing in one or more directions. Two sets of
elastic-constant formulas have been given, based on, two
d.Merentforms of the force-distortion equations.
. The formuk for the ela9tic constants involve four co-
efficients a, i9,a’, and B’ for each rib which deiine the cdTec-
tiveness of the rib in resisting stretching and bending in its
transverse direction, horizontal shearing, and twisting.
Experimental means of determining these coefficients me
discussed, as are theoretical methods of obtaining vahms
corrwponding to lower-limit or upper-limit awmmptions
regarding the stitfnes-sof the plate.

The predictions of the formulas for four of the elastic
constants are compared with experiment and good correla-
tion is obtained when experimentally determined values (or,
in most cams, upper-limit values) of a and /3are used in the
formulas for the elastic constants. Despite e..Terimental
scatter, the calculations and experiment agree, in general,
both in magnitude and in regard to trends resulthig from
variation in angle of skew of ribbing or in skin thickness.

LANGLEy AEROIiAUTICA5 hBORATORy,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANGLEY FIELD, VA., Lfay 26, 196$.



APPENDIX A

RELATIONSHIPS BETWEEN NEW AND ORIGINAL ELASTIC- CONSTANTS

The relationships between the new and original elastic condants are as follows:

D, D=~
1—*% DZ=D1(l—JJZPJ

D.~2.————
I—*##

D,=D,(l–~p,j

D~=D~ Da= W,

“=l-~~p=(a)(”=+’~~~+”-(~(c-+~”=d
E

E,==

{[
6’11-/.@2l

1[
C91–I.%G1

1} }l+E1 CU D1(1—PzPJ
“’l D2(l–pzpv)

—-

(Al)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(As)

(A9)
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C,=–DmT T=–%,

.

(AlO)

(All)

pl=jlf.+

,=E.p=(*)(c=+Pr.A+c.,-*,,(A)(c.+.cJ]+Ez~=(*)(c=+~c”)+~”(*) @“+’zcJl
l-E=p=(*)(c=+p#aJ+c.(*)(c.+p=c=)]

{[
C.—$L.CB

1[
c22-kl,c72Jl,-lqc“DI fl–,uzd 1}‘G’D,(l–-wJ

/.=

{[

CI,—ILZC21
1[

G1–lLycll
1}‘G’D,(l–PZ%’) .1

(A12)
1+~1 all DI (1—PA)

P2=P’V+

,'rEvp.(*)(c=+."ff)+"w(*)(""+""=)l+"'[~(q:::;j+""(*)(""
l-.,~.(~j (G+%m+cff & ‘

I

{[

L’rIJzc21
1[

C,l—wvcll
1}+C=D,(1–w,) ‘M-E C* D1 (1—H.4

P’u=

{[ 1[ 1}c~% +% D~;–p;$u)l+E CM~~(l—PSPY) 1
(A13)
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APPENDIX B

DERIVATION OF FORMULAS

The basic assumptions of the analysis have already been
&scribed. In the, derivations that follow, where the word
“rib” is used, it means one of the substitute sheets, depend-
ing on which property of the rib is under consideration.
Separate derivations are given for the constants associai%d
with bending and stretching and those associated with twist-
ing and shear.

CONSTANm ASSOCIATEDWITH BENDINGAND STRJ3TCEINQ

In the derivation of the formulas for the elastic constants
associated with bending and stretching, an element of the
integrally stiflened plate will be considered; the element has

a% ‘ a’”the average prescribed curvatures ~ and —hyt and the strains

c%(measured in some arbitrary plane which will be referred
to as plane I) and C“(measured in some other arbitrary plane
which will be refereed to as plane It). The development of
these prescribed deformations requires the ap@cation of
momenti of intensity M= and MY and forces of intensity N.
(acting in plane I) and N, (acting = plane II). These mo-
ments and forces and the locations of plarys I and II are
shown in figure 8.

If the strains are assumed h vary linearly through the
thickness of the element, two horizonti planes can be found

in terms of a’” ~
( )

~~ ~, ad J ~d CV in which the z-wise strain

and y-wise strain, respectively, are zero. These planes are
indicated in figure 9.

Strains of components of plate.—The longiturliml exten-
sional strains of the ribs measured at their cross-sectional
centroids can be written in terms of the curvatures and the
distance between the rib cantroids
extensional strains. The strains of

and the planes of zero
the z-wise, y-wise, and

~.,
2 —.— P!oneJI

FrQURE 8.—Forcss and moments coneidemd for analysis of bending
and stretching.

FOR ELASTIC CONSTANTS

skewed ribs are, respectively,

ml)

032)

(B3)

w-here the subscript L denotes longitudinal direction of a rib,

the subscript x the x-wise rib, the subscript y the y-wise rib,

and the subscript 8 the skew rib. The distances ~, k3, h,,

and kl are shown in figure 9.
The transverse strains of the ribs are as follows:

(I34)

(J%)

The extensional strains of the sheet midplane in terms of
the curvatures are

a%
‘s’=–h z? (B7)

(B8)

a%
–and%‘he c-am ad of the element are also the cnr-

“F
Y

x

-—- P&mOfzm r-viseSlrokl
—— PloRe Ofzemywisestmrn

● Rii Centroids

FIGURE9.—Dimensions for analysie of bending and stretching.

923
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vatures of the z-wise and y-wise ribs, respectively. The

curvature of the skew ribs is

NW a% &w.2
75= tk’? ’08’‘+-ajf‘m* 039)

The horizontal shear strain in one of the skew ribs, relative
tQ the longitudinal and transverse directions of the rib, can
be written in terms of the x-wise and y-wise strains at the
same level, which in turn are determined by the z-wise and
y-wise curvatures; thus,

%*=2
[ 1–(&.’,E)i#$’+(k2-a’8H)$ Sh e cos o (B1O)

The z-wise and y-wise ribs have no shear strain.
Expressions for the dimensions hl, h2,h, h, lG,and kJ.—In

the derivation of equations (B1) to (B8) and of equation
(B1O), the assumption was made that the strains varied
linearly from the planes of zero strain. On the basis of the
same assumption, expressions are writtmnfor the strains in
planes I and II-the planes in which N= and N. act and in
which e=and e, are measured. These expressions are

from which

0311)

(B12)

(B13)

By geometry the~dimenaions hl, h, k,, and ks may be
written

b=~w,H–L (B15)

k=~wzH–L . (B16)

where &#I, ~m~H, ~w,H locgte the centroidal axes of the

ribs from the center line of the sheet. Substituting for h2

and kl from equations (J313)and (14) gives

h,=(~w,–k,) H+&

ZXP

h=(fw.–k~) H+%

Z?

k,= (Zw,–kn) H+~&

w

(3319)

(B20)

(B21)

*

(B22)

Evaluation of strain energy,-The toti strain energy of
the element of the integrally stitTened plate can be written as

the sum of the straih energies of its component parts; thus

J J
V=: :%z~2EAw=dz+: ,bMw,~’EAw,dy+

J J

1 b=1 ‘=@6w,Llmw*&+-

50 20
wzT2Efl=Awzdz+

(B23)

In equation (B23) the first three terms give the energy of
extension of the ribs in their longitudinal directions, the
second three terms the energy of extension of the ribs in their
transverse directions, the seventh term the energv associated
with the shearing of the ribs, and the eighth term the energy
of extension of the skin. The next three terms give the
energy of bending of the ribs, and the final term gives the
energy of bending of the skin.

Carrying out the integrations of equation (B23), dividing
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by b~ti to reduce the result to strain energy per unit area, and substitut@ the previously derived expressions for the
distortions eWz,EWW,and so forth gives

&=v’
ru

.
where the identities 11

~=+ Sin 0 and —=—
by b, .0s 0 have been substituted to simplify the expressions.

Invoking the pr~cipl’e of virtual displacements by differentiating the ene~ @ks.sion (B24) with respect to each

.



926 “ REPORT 119~NATIONU ADVISORY CO~ FOR AERONAUTICS

of the strains and curvatures and dividing by EH or .Z7@ gives the following expressions for the forces ancl moments:

bv’ 1 iv.
Z TH=TH

- =[+#+,uA#+(ms`e+B. ti`o+fls*&'eco` 6)]6=+[*&+`#(sh' ocos'o+

@26)

{

Aw,/b, -

[
‘wX/b’ ta;.kj~ (kw,–k~ cos4 tl+~, (a,–kd sin4 o+‘1 ‘s k,.+ (Zw=–kd+A H

= l—P’H
●

(B27)

>



—.

FORMCmASFOR THE ELASTIC CONSTANTS OF PLATES WITH INTEGRAL WAJ?FLE—Lk STll!FENIN13 927

{
‘*’[( * )z 5 &l+ =

= l–@H ( )1}Zw–itusin*e Cosse+/3,(&-&) sin’ e c0s2e–p’, (a’,–kII) * Sid 6 COS2e G+

( )l}H%+{12(:-.,(*Y+’*+%’’’++a(k’2+2+P’,(.’.–kJ (a’.–kn) ~ sin’6COS26
.

(P,(.,–km)aCOS48+@’,(d,-kJ2 ~ )1}
= a%

l+JLSin*O-CO’*e
w

(623)

The equations for iV., iVr, 31., and ill, (eqs. @25) to

(B28)) can be written as

(B31)

[I,+A,&k,)@,-kn)]H $$+

(B32)

where A., A, and so forth are given in equations (43) ta (54).
In order to identify the desired elastic constants associ-

ated with extension and bending, the foregoing force-
clistortion relationships, equations (J329)to (3332),need only
to be put into the form of equations (1), (2), (4), and (5) or
equations (7), (8), (10), and (11).

CONSTANTSAssociatedWITH TWISTING AND SHEARING

The derivation of the formulas for the elmtic constants

msociated with twisting and shearing is a parallel one to that
W381WG-fi~O

for the bending and stretching constants.

An element of the integrally stiffened plate which has the

average prescribed twist ~ti and shear strain y= (measured

in some arbitrary plane which is referred to as pkme UI) is
considered. These prescribed deformations can be effected
by the application of twisting moments of intensi~ M.. and
shearing forc43s of intensity jV= (acting in plane IU) to the
element. (See fig. 10.)

If the hofiontal shear strain is assumecl to vary linearly
through the thicb=j the horizontal plane an be found

‘“r
Y

x .

z*w

k’mH.

2 —.— Plane III

.
FIGURE10.-9hears and moments considered

and shearing.
for analysh of twisting
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(. a%
~~-ofaxay )rmd T’= which has zero shimr shin.

This pkme is shown in figure 11.
Strains of components of plate.—The extensiomd straiqs.

of the longitudinal, transverse, and one of the skew ribs in

their longitu W-directions at their centrcidsare

*.L=o (B33)

*,L=o (B34)

&w
SW,L= +h’1 ~ti s~~ Q335)

r
The transverse stmins of the ribs are

*.T= o (B36)

. *=== o (!337)

*C== @’,-c@ = Sh 20 (B38)

The exkmsional strains of the sheet are

Sg==o @39)

E9w=o (B40)
iYwThe twist —

az aY causes bending of the diaggnal ribs. The

curvature of one of theseribs is given by

@41)

The curvatures of the longitudinal and transverse ribs are

‘r
Y

x

qw

:1, —.— Plone of zero sheer stroin
e , Rib centrcicls

FIGURE 11.—Dimmsions for analysis of t~ig and shearing.
. .

zero. The shear strain in the skin middle surface is given by

(B42)

The magni%ude of the shear strain of the diagonal ribs is
given by

a%iw,=2(h’g—c,’a —ax aYCos28 (B43)

The shear strain of the z-wise and y-wise ribs is given by

a’w‘rJV==—2(h’r CX’=H)—ax 2W

a%
ywx=—2(h’,— a’~ —ax aU

(B44)

0346)

Expressions for the dimensions h’l and h’z,—The following
expressions can be written for the strains in plane III, in
which ZV_ acts and in which ~w is measured (see fig. 10):

a%
~a=—2(h’r—knzH) —ax* @46)

from which
1 -l’W

“’=k=H-3 z (B-47)

ax qV
By geomet~

h’l=~,F,H—h’, (B48)

Substituting for h’. from equation (B47) gives
.

(3349)

ax aY

Evaluation of strain energy.—The total strain enwgy can
be written as

In equation (B50) the first term gives the energy of

extension of the skewed ribs in their Iongitudind directions;

the second tarm, the energy of axtension of the skewed ribs

in their transverse directions; the next three terms, the

.
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energy of shearing of the ribs; and the sixth term, the energy of shearing of the skin. The next term represents the energy of
twisting of the skin, and the last term gives the energy of bending of the skew ribs.

Cmrying out the integrations of equation 0350), dividing by M., substituting previously derived espressiong, and so
forth, gives

$U’

4~{@.,- )2km Wsin2oCOS20+~,(a,—k~2W Sin2e COS$i3+p’,(a’,-k~2H2

[
_l_cosq})(#$y] @51)
2(1 +#)

Differentinthg the enerm expression (3351)with respect tQeach of the distortions and dividing by EB or El? gives the
following expressions for the forces and moments:

[
Mw-km)2fi1126 COS2O+~’,(a’,–,~* .--!_

l}h
a’w

2(l+p) c0s2m ax ~ 0353)
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The equations for .iVa and M= (eqs. @52) and (1353)) can be written as

0364)

(Bs6)

Where A.V, &, and 1= are given in equationa (46), (50), and (54), respe~tively.

Equations (&54) and (B55) may readily be put into the form of equations (6) and (3) or (12) and (9) to yield either

the original or the new elastic constants, respectively.

1.

2.
3.
4.
5.

(i.
7.

8.
9.
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